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Abstract. The SUBFF (3) dynamical symmetry limits of interacting boson – fermion – fermion model are
identified and they are appropriate for heavy deformed odd – odd nuclei for configurations with both the
odd proton and odd neutron occupying all the natural parity orbits in the corresponding valence shells.
There are three symmetry limits and their correspondence with two quasi-particle (proton-neutron) Nilsson
configurations is established; one of the limits mixes both Nilsson nz’s and Λ’s and other two limits mix
only Nilsson Λ’s. The 191Ir (d,t) 190Ir single nucleon transfer spectroscopic strengths are well described by
one of the symmetry limits that mixes only Nilsson Λ’s.

PACS. 21.10.Jx Spectroscopic factors – 21.60.Ev Collective models – 21.60.Fw Models based on group
theory – 27.80.+w 190 ≤ A ≤ 219

1 Introduction

The interacting boson – fermion – fermion model
(IBFFM) provides a framework for understanding the
structure of quadrupole collective states in heavy odd-odd
nuclei. In recent years, with simple IBFFM hamiltonians
several numerical studies of odd-odd nuclei are reported (
[1–3] and references there in) and there is also progress in
developing dynamical symmetry limits of this model asso-
ciated with the U(5) [4,5], O(6) [6,7], and SU(3) limits of
IBM [8,9]; SU(3) limit is appropriate for heavy deformed
nuclei. As pointed out in a recent paper [9] for heavy de-
formed nuclei the orbits occupied by the odd proton and
odd neutron can be classified into natural parity orbits
(NPO) and intruder parity orbits; in the later case a sin-
gle j – orbit is involved (see Fig. 1 given ahead). With this
there are three types of configurations possible for odd –
odd nuclei and denoting proton or neutron, as the case
may be, as particle ‘a’ and the other particle as ‘b’, the
configurations are: (i) (j1)a(j2)b ; (ii) (NPO)a(j)b ; (iii)
(NPO1)a(NPO2)b. The subscripts ‘1, 2’ indicate that the
orbits involved may or may not be the same. Some formal
aspects of the band structures associated with SU(3) even
– even core coupled to configuration (i) where both odd
particles are in single j- orbits are being studied by Paar
et al [8]. Recently, the SUBF (3)⊗ UF (2j + 1) dynamical
symmetry limit associated with case (ii) is identified and
the band structures in this limit are studied by Kota and
Pramanik [9]. The purpose of the present paper is to iden-

tify the dynamical symmetry limits associated with case
(iii), study some of their general features and carry out an
application. We will now give a preview.

Section 2 introduces the SUBFπFν (3) limits for
(NPO1)a(NPO2)b configurations coupled to IBM
SUB(3) core. There are three symmetry limits and their
correspondence with the Nilsson model is established in
Sect. 3. The basis states and energy formula appropriate
for one of the three symmetry limits is given in Sect. 4.
Sect. 5 deals with single nucleon transfer in the symmetry
limits with application to 191Ir (d,t) 190Ir data. Finally
Sect. 6 gives some concluding remarks.

2 Coupling schemes with
SUB(3)⊗ SUFπ(3)⊗ SUFν (3)

With SUB(3) core, low-lying states of odd-odd nuclei are
generated by coupling the two odd particles, odd pro-
ton (π) and odd neutron (ν), to the (2N, 0) SU(3) ir-
reducible representation (irrep); N is boson number. For
the (NPO1)a(NPO2)b configurations, as can be seen from
Fig. 1, the single particle states of the odd proton and odd
neutron belong to oscillator quantum numbers ηπ and ην
respectively. Here one assumes, as in the previous IBFM
[10] and IBFFM studies [9] that pseudo-spin symmetry is
a good symmetry. With this, for rare-earths ηπ = 3 and
ην = 4, for actinides ηπ = 4 and ην = 5, for A ∼ 130 nuclei
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Fig. 1. SUBF (3) limit of IBFM vs Nilsson Model. (a) classification of negitive parity orbits in the 28-40 shell with oscillator

shell number N = 3 and Ñ = η = 2. (b) classification of positive parity orbits for 50 < Z < 82 with oscillator shell number

N = 4 and Ñ = η = 3. (c) classification of negative parity orbits for 82 < N < 126 with oscillator shell number N = 5 and

Ñ = η = 4. (d) classification of positive parity orbits for 126 < N < 184 with oscillator shell number N = 6 and Ñ = η = 5.
The Nilsson spectrum for (a) is taken from [15] and for (b), (c) and (d) from [16]. Note that as N →∞, λ→ 2N and for finite
N , λ = 2N + η − 2µ. The correspondence between Nilsson, pseudo Nilsson and SUBF (3) limit labels is described in detail in
[10]

ηπ = 3 and ην = 3 etc. There are other prescriptions for
defining effective values for η’s [11,12] and they are used in
the application in Sect. 5. Leaving aside the pseudo-spin
(S) generated by SU(2) group, the single odd proton states
and odd neutron states belong to the irreps (ηπ0) and
(ην0) of SUFπ (3) and SUFν (3) groups respectively [9,10].
Therefore rotational bands with (NPO1)a(NPO2)b con-

figurations can be classified according to the SUBFF (3)
irreps where SUB(3)⊗SUFπ (3)⊗SUFν (3) ⊃ SUBFF (3).
Depending on the order of coupling of the SU(3) groups,
three coupling schemes are possible (analogous to the
SU(6) schemes in [4,13]). The three schemes and the cor-
responding SU(3) irreps are,
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I.
SUB(3)⊗ [SUFπ (3)⊗ SUFν (3) ⊃ SUFπFν (3)]
⊃ SUBFF (3)
|N ; (2N, 0); (ηπ0)(ην0)(λπνµπν);
(λBFFµBFF )KBFFα〉

(1)

II.
[SUB(3)⊗ SUFπ (3) ⊃ SUBFπ (3)]⊗ SUFν (3)
⊃ SUBFF (3)
|N ; (2N, 0)(ηπ0)(λBFπµBFπ );
(ην0); (λBFFµBFF )KBFFα〉

(2)

III.
[SUB(3)⊗ SUFν (3) ⊃ SUBFν (3)]⊗ SUFπ (3)
⊃ SUBFF (3)
|N ; (2N, 0)(ην0)(λBFνµBFν );
(ηπ0); (λBFFµBFF )KBFFα〉

(3)

The labels corresponding to α and the K quantum num-
bers in (1-3) will be specified later; in many situations
the K’s in (1-3) are also treated as part of α’s. A gen-
eral hamiltonian that interpolates the symmetry limits
SUB−FπFν (3) (I), SUBFπ−Fν (3) (II) and SUBFν−Fπ (3)
(III) is (with Ĉ2 denoting SU(3) quadratic Casimir oper-
ator),

H = αĈ2

(
SUB(3)

)
+βĈ2

(
SUBFπ (3)

)
+ γĈ2

(
SUBFν (3)

)
+δĈ2

(
SUFπFν (3)

)
+ φĈ2

(
SUBFF (3)

)
+H ′

(4)

The structure and role of H ′ in (4) will be made clear in
Sect. 4. For a fixed SUB(3) irrep ((2N, 0)) and SUBFF (3)
irrep (λBFFµBFF ), limit I is obtained for β = γ = 0, limit
II for γ = δ = 0 and limit III for β = δ = 0. The states
in I, II and III are related to each other by SU(3) Racah
transforms,

|N ; (2N, 0)(ηπ0)(λBFπµBFπ ); (ην0); (λBFFµBFF )α〉II =∑
(λπνµπν)

U((2N, 0)(ηπ0)(λBFFµBFF )(ην0);

(λBFπµBFπ )(λπνµπν))× (5)

|N ; (2N, 0); (ηπ0)(ην0)(λπνµπν); (λBFFµBFF )α〉I

|N ; (2N, 0)(ην0)(λBFνµBFν ); (ηπ0); (λBFFµBFF )α〉III =∑
(λπνµπν)

(−1)ηπ+ην+λπν+µπν (6)

U((2N, 0)(ην0)(λBFFµBFF )(ηπ0);

(λBFνµBFν )(λπνµπν))×

|N ; (2N, 0); (ηπ0)(ην0)(λπνµπν); (λBFFµBFF )α〉I
In (5,6) the coefficients U(– – –) are the SU(3) U–
coefficients [14]. Using the orthonormal properties of the
U−coefficients in (5,6), it is straight forward to write the
states in limit II in terms of those in limit III. The imme-
diate problem to be addressed is about the physical signif-
icance of the limits I, II and III. The equivalent question is

to find the correspondence between the states (1,2,3) and
proton-neutron Nilsson configurations. Now we will turn
to this problem.

3 Correspondence with Nilsson model
(N →∞ limit)

3.1 Preliminaries

The IBFM vs Nilsson corresponence shown in Fig. 1,
which is the prerequisite for deriving the Nilsson configu-
rations corresponding to the limits I, II and III, follows by
considering the [SU(2) ⊃ U(1)]⊗U(1) subgroup of SU(3).
Here the basis states are

∣∣(λµ)εΛMΛ
〉

[14],∣∣∣∣SU(3) ⊃ [SU(2) ⊃ U(1)] ⊃ U(1)
(λ, µ) Λ MΛ ε

〉
ε = 2λ+ µ− 3(p+ q),Λ = µ/2 + (p− q)/2,

MΛ = Λ− 2r

0 ≤ p ≤ λ, 0 ≤ q ≤ µ, 0 ≤ r ≤ 2Λ

(7)

In (7) Λ is a vector as it is a SU(2) label while ε and MΛ
are additive U(1) quantum numbers. The heighest weight
(h.w.) state |(λµ)h.w. 〉 is defined by

|(λµ)h.w. 〉 ⇐⇒
∣∣∣(λµ)εmaxΛmaxMΛmax

〉
εmax = 2λ+ µ,Λmax = µ/2,MΛmax

= Λmax
(8)

Given that the odd-particle in a odd-A nucleus is in oscil-
lator shell η, the deformed (Nilsson) single particle states
[NnzΛ] correspond to the

∣∣∣(η0)ε0Λ0MΛ0

〉
states defined

by (7) via the relations,

[NnzΛ]⇐⇒
∣∣∣(η0)ε0Λ0MΛ0

〉
N = η, ε0 = 3nz −N

Λ0 = (N − nz) /2,MΛ0
= Λ/2.

(9)

Note that the Nilsson orbits in (9) and elsewhere in this
paper refer to the pseudo Nilsson orbits shown for example
in Fig. 1. The relations in (9) follow from (7),

(η0) −→ ε0Λ0MΛ0
,

ε0 = 2η − 3r,Λ0 = r/2,−Λ0 ≤MΛ0
≤ Λ0;

0 ≤ r ≤ η

(10)

and the fact that ε0 is the quadrupole deformation param-
eter given by 3nz − nx − ny (ni are oscillator quanta in
i−th direction; i = x, y, z), 2MΛ0

is projection of angular
momentum onto the symmetry axis (i.e 2MΛ0

is the K-
quantum number) and Λ0 = (nx + ny)/2. It is important
to note, as given by (10), that ε0 uniquely defines Λ0.



246 V.K.B. Kota et al.: SU(3) coupling schemes for odd-odd nuclei in the interacting boson – fermion – fermion model

In the SUBF (3) limit of IBFM with SUB(3) core ir-
rep (2N, 0) coupled to the SUF (3) irrep (η0) of the odd
nucleon, the SUBF (3) irreps (λBFµBF ) are given by (for
N >> η),

(2N, 0)⊗ (η 0) −→ (λBFµBF ) =
η∑
r=0

(2N +η−2r, r) (11)

The correspondence between the SUBF (3) limit and
Nilsson model shown in Fig. 1 follows from the result
that in the asymptotic limit (ASYMP) only h.w. states
matter; ASYMP basically correspond to N → ∞ and
Sect. 4 gives the other conditions to be satisfied when
the laboratory frame (λµ)KLM quantum numbers are
used. With h.w. state for both the N -boson core and
the N -boson one-fermion BF systems and using (8,11),
the single particle ε0 value is simply given by ε0 =
εmax [(λBFµBF )]− εmax [(2N, 0)] = 2η − 3µBF . Then (9)
gives the Nilsson orbit that corresponds to the SUBF (3)
state |(2N, 0)(η0) (λBFµBF )KBFα 〉,

|(2N, 0) (η0) (λBF µBF ) KBF α 〉ASYMP ⇐⇒

[NnzΛ] ; N = η , nz = η − µBF , Λ = KBF

(12)

Alternatively, given a Nilsson orbit [NnzΛ], the
(ε0Λ0MΛ0

) quantum numbers for the deformed single
particle state follow from (9). These in turn generate h.w.
states for the BF system (note that εcmax = 4N ,Λcmax = 0
for the core (2N, 0) irrep) and hence the (λBFµBF )KBF

quantum numbers,

µBF = N − nz
λBF = 2N +N − 2µBF

KBF = Λ

(13)

Complete discussion of the results in (7-13) is given in [10,
17,18].

3.2 SUB−FπFν (3) limit (I)

The deformed proton - neutron configurations that gen-
erate the basis states (1) follow from the results drived
[17] in the context of SUBFF (3) limit of IBF2M with two
identical particles (two protons or two neutrons) coupled
to SUB(3) core (2N, 0) irrep. Firstly, the π − ν SU(3)
irreps (λπνµπν) generated by (ηπ 0) and (ην 0) are given
by,

(ηπ 0)⊗ (ην 0) −→ (λπνµπν)

=
min(ηπ , ην)∑

r=0

(ηπ + ην − 2r, r) (14)

For example (30) ⊗ (40) → (λπνµπν) = (70) ⊕ (51) ⊕
(32) ⊕ (13). The

(
επνΛπνMΛπν

)
quantum numbers for

a given (λπνµπν) follow from (7). The (λBFFµBFF ) ir-
reps arising out of the coupling (2N, 0) ⊗ (λπνµπν) are
generated via the h.w. states of the core irrep and
the BFF irrep; εcmax = 4N , Λcmax = 0, εmaxBFF =
2λBFF + µBFF = 4N + επν , ΛmaxBFF = µBFF/2 =
Λπν and KBFF = 2MΛπν

. The deformed proton-

neutron states
∣∣∣(ηπ0)(ην0) (λπνµπν) επνΛπνMΛπν

〉
can

be decomposed into deformed single particle states∣∣∣(ηπ0)επΛπMΛπ

〉
and

∣∣∣(ην0)ενΛνMΛν

〉
using SU(3) ⊃

SU(2) ⊗ U(1) reduced Wigner coefficients [14,19]
〈(ηπ0) επΛπ (ην0) ενΛν | (λπνµπν) επνΛπν〉 and the stan-
dard Wigner coefficients

〈
ΛπMΛπ

ΛνMΛν
| ΛπνMΛπν

〉
.

Putting all these together give the mixure of π−ν Nilsson
configuations that correspond to the states (1) of limit I,

|N ; (2N, 0); (ηπ0) (ην0) (λπνµπν) ;

(λBFFµBFF )KBFFα〉ASYMP

⇐⇒
∑

επ(εν),Λπ ,Λν ,MΛπ
(MΛν

)

〈(ηπ0) επΛπ (ην0) ενΛν | (λπνµπν) επνΛπν〉×〈
ΛπMΛπ

ΛνMΛν
| ΛπνMΛπν

〉
×

[NnzΛ]π [NnzΛ]ν
(15)

επν = 2λBFF + µBFF − 4N = επ + εν

Λπν = µBFF/2; ~Λπν = ~Λπ + ~Λν

MΛπν
= KBFF/2 = MΛπ

+MΛν

(16)

Λπ = (ηπ − nzπ ) /2 = rπ/2, επ = 3nzπ − ηπ = 2ηπ − 3rπ;

ηπ = Nπ, 0 ≤ rπ ≤ ηπ (17)

Λν = (ην − nzν ) /2 = rν/2, εν = 3nzν − ην = 2ην − 3rν ;

ην = Nν , 0 ≤ rν ≤ ην (18)

Given a (λπνµπν) irrep (using (14)), all the al-
lowed επνΛπν follow from (7) and then the allowed
(λBFFµBFF )KBFF irreps follow from (16); note that
KBFF = µBFF , µBFF − 2, . . ., 0 or 1 as λBFF >>
µBFF for N → ∞. This simple pescription for obtaining
(λBFFµBFF ) is easily verified to be correct by comparing
with more formal Kronecker product formula,

(2N, 0)⊗ (λπνµπν) −→ (λBFFµBFF )

=
∑

a≤λπν ,b≤µπν
(2N + λπν − 2a− b, µπν + a− b) (19)

Let us consider the example with (λπνµπν) = (32).
Then (επν ,Λπν) = (8, 1), (5, 3

2 ), (5, 1
2 ), (2, 2), (2, 1), (2, 0),
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(−1, 5
2 ), (−1, 3

2 ), (−1, 1
2 ), (−4, 2), (−4, 1), (−7, 3

2 ). The
corresponding (λBFFµBFF ) irreps from (16) are,

(2N + 3, 2)⊕ (2N + 1, 3)⊕ (2N + 2, 1)⊕ (2N − 1, 4)⊕

(2N, 2)⊕ (2N + 1, 0)⊕ (2N − 3, 5)⊕ (2N − 2, 3)⊕

(2N − 1, 1)⊕ (2N − 4, 4)⊕ (2N − 3, 2)⊕ (2N − 5, 3)

and (19) gives the same result. The correspondence given
by (15) shows that the (λBFFµBFF ) irreps in limit I mix
Nilsson configurations with different nz values. From Fig.
1 it is seen that these configurations are well seperated in
energy. Let us consider some examples,

|(2N, 0); (30)π(40)ν(32)πν ; (2N − 3, 2)KBFF = 0 〉ASYMP

=
√

1/10 {[312 ↑] [402 ↓] + [312 ↓] [402 ↑]}

−
√

2/15 {[310] [400]}

+
√

3/10 {[303 ↑] [413 ↓] + [303 ↓] [413 ↑]}

−
√

1/30 {[301 ↑] [411 ↓] + [301 ↓] [411 ↑]}

|(2N, 0); (30)π(40)ν(32)πν ; (2N − 4, 4)KBFF = 4 〉ASYMP

=
√

1/5 [312 ↑] [402 ↑]−
√

2/5 [310] [404 ↑]

−
√

1/5 [303 ↑] [411 ↑] +
√

1/5 [301 ↑] [413 ↑]

|(2N, 0); (30)π(40)ν(32)πν ; (2N − 1, 1)KBFF = 1 〉ASYMP

= 1/3 [312 ↑] [411 ↓] +
√

1/3 [312 ↓] [413 ↑]

−
√

2/9 [310] [411 ↑] +
√

1/6 [303 ↑] [422 ↓]

−1/3 [301 ↑] [420 ↓] +
√

1/18 [301 ↓] [412 ↑]
(20)

In (20) ↑ implies Λπ(ν) is positive and ↓ implies Λπ(ν) is
negitive. The SU(3) ⊃ SU(2)⊗U(1) reduced Wigner coef-
ficients in (15) are evaluated using Draayer and Akiyama
codes [19]. Conventionally the observed rotational bands
in heavy ( A >∼ 150) odd-odd nuclei are interpeted as
essentially pure two quasi - particle (2 q.p.) Nilsson con-
figurations (see [20,21] and references there in). To the
extent this is not a bad approximation, admixing between
distant Nilsson orbits (i.e. involving different nz values)
is ruled out. Therefore it is plausible that in real nuclei
the SUB−FπFν (3) limit I may not be observed. Now let us
turn to limit II (also limit III) states.

3.3 SUBFπ−Fν (3) limit (II)

In the SUBFπ−Fν (3) limit (II) (λBFπµBFπ ) are good quan-
tum numbers and therefore as argued in Sect. 2.1 the
(επΛπ) are good quantum numbers in the ASYMP limit.
Just as in limit I, the (λBFFµBFF )KBFF quantum num-
bers will fix εmaxBFF , ΛmaxBFF and MΛBFF

. As ε’s are additive,

the εν for the odd neutron is given by εν = εmaxBFF−επ−4N .
The corresponding Λν is unique; see (10). Then it is clear
that for the basis states (2), i.e. for fixed (λBFπµBFπ ) and
(λBFFµBFF ), the single particle nzπ (επ) and nzν (εν) are
fixed in the ASYMP limit. With this, it is entirely possible
that,

|N ; (2N, 0) (ηπ0) (λBFπµBFπ ) ; (ην0) ;

(λBFFµBFF )KBFFα〉ASYMP

⇐⇒
∑

MΛπ
(MΛν

)

〈
ΛπMΛπ

ΛνMΛν
| ΛBFFMΛBFF

〉
×

[NnzΛ]π [NnzΛ]ν
(21)

ε′BFF = 2λBFF + µBFF − 4N,

ΛBFF = µBFF/2,MΛBFF
= KBFF/2

επ = 2λBFπ + µBFπ − 4N,nzπ = ηπ − µBFπ ,

nzν = [ην + ε′BFF − επ] /3

Λπ = 2MΛπ
, Λν = 2

(
MΛBFF

−MΛπ

)
Λπ = (ηπ − nzπ ) /2,Λν = (ην − nzν ) /2

(22)

The proof of (21) follows from (5,15), the orthonormal
properties of SU(3) ⊃ SU(2) ⊗ U(1) reduced Wigner co-
efficients and the relation,

U ((2N, 0) (ηπ0) (λBFFµBFF ) (ην0) ;

(λBFπµBFπ ) (λπνµπν))ASYMP

= 〈(ηπ0) επΛπ (ην0) ενΛν | (λπνµπν) επνΛπν〉 ;

επ = 2λBFπ + µBFπ − 4N,

επν = 2λBFF + µBFF − 4N, εν = επν − επ
Λπ ⇐⇒ επ, ;Λν ⇐⇒ εν ,Λπν = µBFF/2

(23)

Equation (23) is verified numerically for a variety of values
of ηπ, ην and N and for all allowed (λµ) irreps in (23). For
example the accuracy of (23) is found to be within 2-4%
for (ηπ = ην = 2, N = 10, 20, 40) and (ηπ = 3, ην = 4,
N = 10, 20) cases.

A simple algorithm for generating the basis states (2)
and then the expansion (21) in terms of the Nilsson orbits
is as follows. Firstly note that nzπ and nzν are preserved by
the SUBFπ−Fν (3) limit. Given ηπ and ην the nzπ and nzν
are 0 ≤ nzπ ≤ ηπ and 0 ≤ nzν ≤ ην . For a fixed (nzπ , nzν ),
the επ and εν are επ = 3nzπ − ηπ = 2ηπ − 3(ηπ −nzπ ) and
εν = 3nzν −ην . Then λBFπ = 2N +2nzπ −ηπ and µBFπ =
(ηπ − nzπ ); also Λπ = µBFπ/2 = (ηπ − nzπ )/2 and Λν =
(ην − nzν )/2. Using the vector identity ~ΛBFF = ~Λπ + ~Λν
and the additive result εBFF = επ + εν + 4N will generate
(λBFFµBFF ) irreps via (8); λBFF = (εBFF − 2ΛBFF )/2,
µBFF = 2ΛBFF . Finally KBFF = µBFF , µBFF − 2, . . ., 0
or 1. Let us consider an example with (ηπ, ην) = (3, 4) and
say (nzπ , nzν ) = (1, 1). They give επ = 0, εν = −1, εBFF =
4N − 1, Λπ = 1, Λν = 3/2 and ΛBFF = 5/2, 3/2, 1/2.
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Then (λBFπ , µBFπ ) = (2N−1, 2) and (λBFF , µBFF )KBFF

are (2N−3, 5)KBFF = 5, 3, 1, (2N−2, 3)KBFF = 3, 1 and
(2N − 1, 1)KBFF = 1. Using (21), the Nilsson correspon-
dence for these states is,

|(2N, 0)(30)π(2N − 1, 2); (40)ν ;

(2N − 1, 1)KBFF = 1〉ASYMP

=
√

1/2 [312 ↓] [413 ↑]−
√

1/3 [310] [411 ↑]

+
√

1/6 [312 ↑] [411 ↓]

|(2N, 0)(30)π(2N − 1, 2); (40)ν ;

(2N − 2, 3)KBFF = 1〉ASYMP

= −
√

2/5 [312 ↓] [413 ↑]−
√

1/15 [310] [411 ↑]

+
√

8/15 [312 ↑] [411 ↓]

|(2N, 0)(30)π(2N − 1, 2); (40)ν ;

(2N − 2, 3)KBFF = 3〉ASYMP

= −
√

3/5 [310] [413 ↑] +
√

2/5 [312 ↑] [411 ↑]

|(2N, 0)(30)π(2N − 1, 2); (40)ν ;

(2N − 3, 5)KBFF = 1〉ASYMP

=
√

1/10 [312 ↓] [413 ↑] +
√

3/5 [310] [411 ↑]

+
√

3/10 [312 ↑] [411 ↓]

|(2N, 0)(30)π(2N − 1, 2); (40)ν ;

(2N − 3, 5)KBFF = 3〉ASYMP

=
√

2/5 [310] [413 ↑] +
√

3/5 [312 ↑] [411 ↑]

|(2N, 0)(30)π(2N − 1, 2); (40)ν ;

(2N − 3, 5)KBFF = 5〉ASYMP

= [312 ↑] [413 ↑]

(24)

As nz’s are good quantum numbers in the SUBFπ−Fν (3)
limit, the admixing of pure 2 q.p. Nilsson configurations is
moderate (only Λ’s are mixed) in this limit unlike in the
SUB−FπFν (3) limit (I) where nz’s are also mixed. There-
fore coupling schemes given by (2) may be observed in
data; mixing of 2 q.p. Nilsson configurations is seen in
data [20,21].

Before turning to the next section, some remarks about
the SUBFν−Fπ (3) limit (III) are in order. From the dis-
cussion prior to (24) it is clear that SUBFπ−Fν (3) limit

states not only have fixed (λBFπµBFπ ) irreps but also im-
plicitly fixed (λBFνµBFν ) irreps. Therefore the states (II)
and (III) are simply related to each other by a phase fac-
tor,

|N ; (2N, 0) (ηπ0) (λBFπµBFπ ) ; (ην0) ;

(λBFFµBFF )KBFFα〉ASYMP

= (−1)Λπ+Λν−ΛBFF |N ; (2N, 0) (ην0) (λBFνµBFν ) ;

(ηπ0) ; (λBFFµBFF )α〉 ;

Λπ = µBFπ/2,Λν = µBFν/2,ΛBFF = µBFF/2

µBFν = (2ην − 2λBFF − µBFF + 2λBFπ + µBFπ ) /3,

λBFν = 2N + ην − 2µBFν

(25)

The (λBFνµBFν ) for the examples in (24) is (2N − 2, 3).
Thus in the ASYMP (N → ∞) limit there is one-to-one
correspondence between the limits II and III but they dif-
fer for finite N ; the transformation between states in II
and III follows easily by combining (5) and (6). By invert-
ing (21), it is possible to write [NnzΛ]π [NnzΛ]ν configu-
rations in terms of limit II states (2). Then it is seen that
the 2 q.p. Nilsson configurations are mixures of SUBFF (3)
irreps and therefore they will not have SUBFF (3) symme-
try,

[NnzΛ]π [NnzΛ]ν

∼
∑
ΛBFF

〈
ΛπMΛπ

ΛνMΛν
| ΛBFFMΛBFF

〉
|N ; (2N, 0) (ηπ0) (λBFπµBFπ ) ;

(ην0) ; (λBFFµBFF )KBFF 〉

(26)

In (26) Λπ and Λν uniquely define MΛπ
, MΛν

, MΛBFF

and KBFF . Similarly nz’s define µBFπ , Λπ and Λν
and there by ΛBFF and µBFF . Note that by diago-
nalizing Hmix = αĈ2(SUBFπ (3)) + βK̂2(SUBFπ (3)) +
γĈ2(SUBFF (3)) + δK̂2(SUBFF (3)) in the limit II basis
(2) gives (26); the K̂2 operators with eigenvalues K2 are
defined ahead in Sect. 4.

3.4 Summary

Deformed odd-odd nuclei, with good pseudo-spin, admit
three coupling schemes and they are: (i) pure 2 q.p. Nils-
son configurations having good π and ν nz’s and Λ’s; (ii)
the limit I states (1) that mix both Nilsson nz’s and Λ’s;
(iii) the limit II states (2) (or limit III states (3)) that
mix only Nilsson Λ’s. The scheme (i) is well known and
IBFFM generates the two new coupling schemes (ii) and
(iii), i.e. limits I and II. Starting with the Nilsson orbits
simple algorithms for generating the basis states in limits
I and II, without using SU(3) multiplications, is given in
Sects. 3.2 and 3.3 respectively. Using these algorithms and
the pseudo Nilsson orbits in Fig. 1, it is easy to enumer-
ate the basis states (1)-(3) and their expansions in terms



V.K.B. Kota et al.: SU(3) coupling schemes for odd-odd nuclei in the interacting boson – fermion – fermion model 249

of the 2 q.p. Nilsson configrations. Emperical example for
limit II is discussed in Sect. 5 and so far no example for
limit I is found (here Nilsson nz’s are mixed). Before turn-
ing to Sect. 5, first we give the complete basis and energy
formula in limit II.

4 Basis states and energy formula in limit II

The SUBFF (3) dynamical symmetry limits (I, II, III) of
IBFFM provide direct laboratory frame description of ob-
servables unlike the intrinsic frame description by the 2
q.p. Nilsson configurations. To this end one has to em-
ploy the SU(3) ⊃ O(3) ⊃ O(2) basis states defined by
|(λBFFµBFF )KBFF LBFF MBFF 〉 and couple them to the
pseudo spin S (S = 0 or 1) of the odd proton - odd neu-
tron system. For a general |(λµ)KLM 〉, the Elliott [22] or
Vergados [23] K in the ASYMP limit ( λ → ∞, λ >> µ,
λ >> L ) is the standard K-label. Then, L = K,K+1, . . .
for K 6= 0, L = 0, 2, 4, . . . for K = 0 and λ even and
L = 1, 3, 5, . . . for K = 0, λ odd. In order to split the K-
bands, Naqvi and Draayer [24] derived a K̂2(SU(3)) op-
erator, that preserves angular momentum, using a rotor
- SU(3) mapping. In terms of the quadrupole generator
Q2, angular momentum operator L̂ and the SU(3) ⊃ O(3)
integrity basis operators X̂3 and X̂4, the K̂2(SU(3)) op-
erator is

K̂2(SU(3)) =
λ1λ2L̂

2 + λ3X̂
a
3 + X̂a

4

2λ2
3 + λ1λ2

;

X̂3 =
[
(L1 ×Q2)1 × L1

]0
,

X̂4 =
[
(L1 ×Q2)1 × (Q2 × L1)1

]0
X̂a

3 =

√
30
6
X̂3, X̂

a
4 = −5

√
3

18
X̂4

λ1 = (−λ+ µ)/3, λ2 = (−λ− 2µ− 3)/3,

λ3 = (2λ+ µ+ 3)/3

(27)

In (27) the normalization of the Q2 operator is such that

Q2·Q2 = 4Ĉ2−3L̂2 and
〈
Ĉ2

〉(λµ)

= λ2+µ2+λµ+3(λ+µ).
Using the ASYMP limit expression for the reduced ma-
trix elements of the Q2 operator [9,18], we explicitly ver-
ified that in the ASYMP limit the K̂2(SU(3)) operator
defined by (27) is diagonal in the |(λµ)KLM 〉 basis and
its eigenvalues are exactly K2. Eq. (27) defines K̂2 op-
erator for SUBFπ (3), SUBFν (3) and SUBFF (3) groups
with eigenvalues in ASYMP limit being K2

BFπ
, K2

BFν

and K2
BFF . The K̂2(SUBFF (3)) operator splits the KBFF

bands that belong to a given (λBFFµBFF ). However the
hamiltonian should also contain terms that will change the
positions of (λBFFµBFF ) bands without admixing them
[25]. Following the results in [9,10,17,25] a quadrupole
- quadrupole (QQ) plus exchange (EXCH) interaction
VBFF = ΓBFFVQQ + ΛBFFVExch for this purpose is con-
structed and its basic structure was already given in [17].
In the ASYMP limit, just as in odd-A nuclei case [10], the

VBFF is diagonal in the |(λBFFµBFF )KBFFLBFF 〉 basis
and its eigenvalues are,

〈VBFF 〉(λBFFµBFF )KBFFLBFF

= (2N)
[
ΓBFF

4
(2x+ y) +

ΛBFF

120
(2x+ y)2

]
x = λBFF − 2N, y = µBFF .

(28)

Combining (4), (27) and (28) and adding theQQ+EXCH
VBFπ term with strengths ΓBFπ and ΛBFπ respectively for
SUBFπ (3) [10], the basis states, hamiltonian and energy
formula in limit II are,

basis states: |N ; (2N, 0) (ηπ0) (λBFπµBFπ ) ;

(ην0) ; (λBFFµBFF )KBFFLBFFSJBFFMBFF 〉 ,

H = E0 + VBFπ + VBFF + αK̂2(SUBFF (3))

+ βL̂2
BFF + γŜ2 + δĴ2

BFF ,

E = E0 + (2N)
[
ΓBFπ

4
(2ηπ − 3µBFπ )

+
ΛBFπ
120

(2ηπ − 3µBFπ )2

]
+ (2N)

[
ΓBFF

4
(2λBFF − 4N + µBFF )

+
ΛBFF

120
(2λBFF − 4N + µBFF )2

]
+ αK2

BFF + βLBFF (LBFF + 1)

+ γS(S + 1) + δJBFF (JBFF + 1)

(29)

In (29) S = 0, 1 and JBFF = LBFF + S. The
|LBFF S JBFF 〉 states in (29) can be arranged into K̄J

bands where K̄J is symbolic,

|(λBFFµBFF )KBFFLBFFSJBFFMBFF 〉

⇐⇒
∣∣(λBFFµBFF )KBFFLBFFS; K̄JJBFFMBFF

〉
S = 0

K̄J = KBFF ,
JBFF = LBFF

S = 1
λBFF = any KBFF 6= 0 K̄J = KBFF − 1,

JBFF = LBFF − 1
K̄J = KBFF ,
JBFF = LBFF

K̄J = KBFF + 1,
JBFF = LBFF + 1

λBFF = even KBFF = 0 K̄J = 0,
JBFF = LBFF + 1 = 1, 3, 5, . . .
K̄J = 1,
JBFF = LBFF − 1, LBFF = 1, 2, 3, 4, . . .

λBFF = odd KBFF = 0 K̄J = 0,
JBFF = LBFF − 1 = 0, 2, 4, . . .
K̄J = 1,
JBFF = LBFF , LBFF + 1 = 1, 2, 3, 4, . . .

(30)
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Instead of the K̄J bands, it is possible to construct good
KJ bands by diagonalizing a K̂2

J operator in the ba-
sis in (29). Such an operator is given recently by Naqvi
and Draayer [26] and we verified explicitly that in the
AYSMP limit (i.e. in the limit of interest in the present
study) K̂2

J(SUBFF (3)) eigenvalues are exactly K2
J . The

basis states with good KJ are

|N ; (2N, 0) (ηπ0) (λBFπµBFπ ) ; (ην0) ;

(λBFFµBFF )KBFF ; SKS ; KJJBFFMBFF 〉

S = 1
λBFF = any KBFF 6= 0 KJ = KBFF − 1,

JBFF = KJ ,KJ + 1, . . .
KJ = KBFF ,
JBFF = KJ ,KJ + 1, . . .
KJ = KBFF + 1,
JBFF = KJ ,KJ + 1, . . .

λBFF = even KBFF = 0 KJ = 0,
JBFF = 1, 3, 5, . . .
KJ = 1,
JBFF = 1, 2, 3, 4, . . .

λBFF = odd KBFF = 0 KJ = 0,
JBFF = 0, 2, 4, . . .
KJ = 1,
JBFF = 1, 2, 3, 4, . . .

(31)

Bands with S = 0 are not given in (31) as they are same
as |(λBFFµBFF )KBFFLBFFMBFF 〉 bands. The explicit
form for the expansion coefficients CKBFF ;S ;KJJBFF

LBFF
in the

expansion of good KJ states (31) in terms of good LSJ
states (29) follow for example from Eq. (4) of [27]. The
hamiltonian for good KJ basis states (31) is same as the
hamiltonian in (29) except that βK̂2

J(SUBFF (3)) replaces
βL̂2

BFF . Finally, it should be mentioned that extensions of
(29,30,31) for limits I and III are straightforward.

5 Single nucleon transfer in the SUBFF (3)
symmetry limits

In odd mass nuclei single nucleon transfer (SNT) strengths
provide finger print patterns [16,28] and IBFM SUBF (3)
limit is successful in reproducing the pattern seen for
example in 185W nucleus [10]. By the same token it is
expected that SNT will be a useful tool for testing the
SUBFF (3) coupling schemes (wavefunctions) for deformed
odd-odd nuclei. There is recent interest in SNT tests of
IBFFM and the Nilsson model with new experimental
data produced by Garrett and Burke for 190,192,194Ir iso-
topes [2,7,20,21,29]. In the analysis of this data it is seen
that the nucleus 194Ir is better described by IBFFM with
O(6) core (compared to Nisson model which assumes axi-
ally symmetric rigid core just as in the SUBFF (3) symme-
try limits) [2,7] and this is in good accord with the known
result that even-even nuclei in A ' 190 region exhibit

γ-softness. However it is seen from the analysis of SNT
data involving 192Ir [29] that the structure of some of the
low-lying levels in this nucleus are equally well described
by both IBFFM (with O(6) core) and Nilsson model. Fol-
lowing this trend, 190Ir data is analyzed in [20,21] using
only the Nilsson model. More recently Balodis [30] studied
in detail 192Ir (33 levels assigned to 19 rotational bands)
and stated that ‘if we restrict ourselves to the enegy a few
hundreds of keV, 192Ir is satisfactorily described using the
comparatively simple Nilsson model’. These results show
that: (i) γ - softness of the core in the case of 190Ir will not
effect the SNT strengths for the observed low-lying levels;
(ii) it is important to consider mixing of 2 q.p. Nilsson con-
figurations in odd-odd nuclei states. Therefore, for 190Ir to
a good approximation one can use SUB(3) core and from
the arguments of Sect. 3.3 combined with (ii), it is seen
that SNT involving 190Ir will test the applicability of limit
II. Section 5.1 gives the formulation for calculating SNT
spectroscopic strengths and using this 191Ir −→ 190Ir SNT
data is analyzed in Sect. 5.2.

5.1 SNT strengths in limit II

In odd-A to odd-odd nuclei SNT two situations are pos-
sible for the change in the boson number (N) and the
number of odd fermions (Mρ): (i) ∆N = 0 and ∆Mρ = 1,
ρ = π or ν; (ii) ∆N = 1 and ∆Mρ = 1, ρ = π or ν. For
∆N = 0 transitions, the transfer operator to lowest order
is,

P †
` 1

2 j;ρ
′ = ζ` 1

2 j;ρ
′a
†
` 1

2 j;ρ
′ , ρ
′ = π or ν. (32)

The operator for ∆N = 1 transitions is more complicated
(see for example [7]) and this case is not considered in
this paper. In (32) ζ` 1

2 j;ρ
′ are parameters to be determined

from microscopic considerations or by fitting data. Let us
assume that the target odd-A nucleus ground state is a
good SUBF (3) state and it is denoted by,

|i〉 =
∣∣N ; (2N, 0) (ηρ0)

(
λBFρµBFρ

)
KBFρLBFρ ;

1
2 ;JBFρM

〉
; ρ = π or ν

(33)

Similarly the final odd-odd nucleus states |f 〉 belong to
SUBFF (3) limits I, II or III and for example in limit II
they are given by (30). Then the spectroscopic strength
Sj(`) for (` 1

2j)ρ′ transfer is,

Sj(`) (αiJi;ρ −→ αfJf ;ρρ′) (34)

=
(
ζ` 1

2 j;ρ
′

)2

(2Ji + 1)−1
∣∣∣〈αfJf ;ρρ′ || a†` 1

2 j;ρ
′ || αiJi;ρ

〉∣∣∣2
Using (33) with ρ = π for the initial odd-A states |αiJi 〉
and the states (30) for the final odd-odd nucleus states
|αfJf 〉, the formula, with neutron addition to the target,
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for the spectroscopic strength in limit II is,

Sj(`) =
(
ζ` 1

2 j;ν

)2 2JBFF + 1
2JBFπ + 1

χ

LBFπ `ν LBFF
1
2

1
2 S

JBFπ jν JBFF


2

×

|〈(λBFπµBFπ )KBFπLBFπ (ην0) `ν ||

(λBFFµBFF )KBFFLBFF 〉|2
(35)

In (35) χ{−−} is 9 − j coefficient and 〈−− || −−〉 is
SU(3) ⊃ O(3) reduced Wigner coefficient. Modifications
of (35) for (i) odd-neutron target, (ii) for limits I and III
and (iii) for good KJ states (31) is straightforward. For
example with ρ′ = π in (32) and ρ = ν in (33) the spectro-
scopic strength in limit III is given by (35) with π ↔ ν.
Similarly for good KJ bands in limit II, the formula is
obtained by combining (35) with the CKBFF ;S ;KJJBFF

LBFF
co-

efficients. Equation (35) is used in analyzing 191Ir−→ 190Ir
SNT spectroscopic strengths deduced from 191Ir (d,t)190Ir
experiment by Garrett and Burke [21] and the results are
given in the next subsection.

5.2 Anlysis of 191Ir −→ 190Ir SNT spectroscopic
strengths

Low-lying rotational bands of 190Ir are generated by the
proton Nilsson orbits [400]1

2

+ and [402]3
2

+ which form a
pseudo Nilsson doublet (see Fig. 1b) and the neutron Nils-
son orbits [510]1

2

− and [512]3
2

− which also form a pseudo
Nilsson doublet (see Fig. 1c). These orbits correspond to
pseudo - oscillator shells Ñ = 3 and Ñ = 4 respectively
as shown in Figs. 1b,c. In certain situations it is possi-
ble to adopt a much simpler picture as is the case with
the Nilsson orbits for 190Ir. To the extent that the NPO
g7/2 and d5/2 orbits for protons in N = 4 shell can be ig-
nored, the d3/2 and s1/2 orbits can be assigned to a η = 1
shell [11]. Then the orbits [400]1

2

+ and [402]3
2

+ map to
[101] and [411]1

2

+ to [110] orbit of the η = 1 shell. Fol-
lowing Sect. 3.1, the corresponding SUBF (3) irreps are
(2N − 1, 1)KBF = 1 and (2N + 1, 0)KBF = 0. Similarly
ignoring the h9/2 and f7/2 orbits for neutrons in N = 5
shell, the p3/2, f5/2 and p1/2 orbits can be assigned to
a η = 2 shell [12]. Then the orbit [501]1

2

− maps to [200],
[503] 5

2

− and [501]3
2

− to [202], [512]3
2

− and [510]1
2

− to [211]
and [521]1

2

− to [220] orbit of the η = 2 shell. The corre-
sponding SUBF (3) irreps are (2N − 2, 2)KBF = 0, (2N −
2, 2)KBF = 2, (2N, 1)KBF = 1 and (2N + 2, 0)KBF = 0.
Describing the low-lying states in terms of ηπ = 1 and
ην = 2, the ground state of 191Ir in the SUBF (3) limit is
(with N = 8) |(16, 0)(10)π(15, 1)BFπKBFπ = 1,LBFπ = 1,
s = 1

2 , JBFπ = 3
2 〉 and similarly the low-lying states of

190Ir in the SUBFF (3) limit II are,

|(16, 0)(10)π(15, 1)BFπ ; (20)ν ;

(λBFFµBFF )KBFFLBFF ; S; JBFF 〉 .

The method described in Sect. 3.3 fixes the (λBFFµBFF )
irreps. The proton and neutron Nilsson orbits that make
up the low-lying states of 190Ir are already given and they
correspond to [101]π and [211]ν orbits with επ = −1(Λπ =
1/2) and εν = 1(Λν = 1/2) respectively. Then εmaxBFF =
4N and ΛmaxBFF = 0, 1. These give (λBFFµBFF )KBFF =
(16, 0)0 ⊕ (15, 2)0, 2. The K̄J bands generated by these
irreps follow from (30) and they are listed in Table 1. In
the 191Ir (d,t) 190Ir experiment [21] six bands in 190Ir are
populated with (NPO1)a(NPO2)b configurations and in
each case 1-3 levels are seen. The Kπ

J bands, the Jπ mem-
bers and their energies and the structure of these levels
in terms of limit II quantum numbers are given in Ta-
ble 1. Choosing the parameters in the energy formula (29)
such that the BFF irrep (16, 0) is lower than (15, 2), states
with larger KBFF are lower in energy and similarly S = 1
states to be lower than those with S = 0 give essentially
the same band sequence as seen in data. In the present
example, the parameters ΓBFπ , ΛBFπ , ΓBFF and ΛBFF in
(29) do not contribute to the excitation energies. Choos-
ing α = 29.5 keV, β = 10.65 keV, γ = −18.97 keV and
δ = 14.28 keV, all the enegies are reproduced within 20
keV except for the three levels that belong to Kj = 0−1
band which are lower (compared to experiment) by about
200 keV and the one level that belong to the KJ = 3−1
band which is higer by 200 keV. A better agreement for
the KJ = 0−1 band is obtained by changing the S2 opera-
tor strength γ but at the expense of the position of the 2−
level of 2−2 band. No attempt is made to add some extra
terms to the hamiltonian in (29) so that better agreements
for energies can be obtained. Our major interest being in
testing the structure of the wavefunctions. Using Table 1
and (35), total spectroscopic strength ST =

∑
j Sj(`) is

calculated for each level. The results and their compari-
son with data are shown in Fig. 2. The agreement between
the SUBFF (3) limit II results and experiment is seen to
be good. It should be stressed that the agreement shown
in Fig. 2 is obtained using the K̄J scheme (30) which uses
L−S (with S being pseudo-spin) coupling. Thus the mix-
ing of 2 q.p. Nilsson configurations as given by limit II in
190Ir explains the SNT data.

6 Conclusions

The SUBFF (3) dynamical symmetry limits of IBFFM are
identified in this article and they are appropriate for heavy
deformed odd - odd nuclei for (NPO1)a(NPO2)b configu-
rations. There are three symmetry limits and their corre-
spondence with 2 q.p. (proton-neutron) Nilsson configura-
tions is established. It is shown that IBFFM generates two
new coupling schemes - limit I states (1) mixing both Nils-
son nz’s and Λ’s and limit II states (2) (or limit III states
(3)) mixing only Nilsson Λ’s respectively. This work and
the previous studies [8,9] on symmetry limits for (j)a(j)b
and (NPO)a(j)b configurations respectively with SUB(3)
core complete the identification of SU(3) related dynami-
cal symmetries of IBFFM. Analysis of 191Ir (d,t) 190Ir data
using SUBFF (3) limit II, given in Sect. 5, should prompt
new SNT experiments populating (NPO)a(NPO)b type
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Table 1. K̄J bands with J ≤ 4 for 190Ir in SUBFF (3) limit II.
Given in the last two columns are the observed Kπ

J bands and
energies of the corresponding band members

(λBFF , µBFF ) KBFF LBFF S K̄J JBFF Kπ
J Energy

(keV)

(16,0) 0 2 1 1 1 1−1 25.9
(16,0) 0 2 1 1 2 83
(16,0) 0 4 1 1 3
(16,0) 0 4 1 1 4

(16,0) 0 0 0 0 0 0−1 183.2
(16,0) 0 2 0 0 2 313.4
(16,0) 0 4 0 0 4
(16,0) 0 0 1 0 1 173.8
(16,0) 0 2 1 0 3

(15,2) 2 2 1 3 3 3−1 83
(15,2) 2 3 1 3 4

(15,2) 2 2 1 2 2 2−1 220
(15,2) 2 3 1 2 3 347.8
(15,2) 2 4 1 2 4

(15,2) 2 2 1 1 1 1−2 144
(15,2) 2 3 1 1 2 284.9
(15,2) 2 4 1 1 3
(15,2) 2 5 1 1 4

(15,2) 2 2 0 2 2 2−2 225
(15,2) 2 3 0 2 3
(15,2) 2 4 0 2 4

(15,2) 0 1 1 1 1
(15,2) 0 1 1 1 2
(15,2) 0 3 1 1 3
(15,2) 0 3 1 1 4

(15,2) 0 1 0 0 1
(15,2) 0 3 0 0 3
(15,2) 0 1 1 0 0
(15,2) 0 3 1 0 2
(15,2) 0 5 1 0 4

configurations in odd-odd nuclei. The nuclei 185W and
187Os with odd neutron and 169Tm and 175Re with odd
proton are known to be good examples for the SUBF (3)
limit of IBFM [10,18] and SNT experiments starting with
these nuclei and their neighbours will provide additional
tests for the SUBFF (3) symmetry limits. Analysis of 190Ir
levels clearly showed that the hamiltonian in SUBFF (3)
symmetry limits should be studied further. More detalied
study of the spectra ( hamiltonians), single nucleon trans-
fer strengths (both with ∆N = 0 and ∆N = 1) and other
observables including electromagnetic transition stengths
etc. in the SUBFF (3) limits will be given in a future pub-
lication.

One of the authors (UDP) thanks S. Bhattacharya for many
useful discussions and acknowledges Physical Research Labo-
ratory for financial support.

Fig. 2. Total spectroscopic strength ST =
∑

Sj(`) for 190Ir
levels from 191Ir ground state. Data is for 191Ir (d,t) 190Ir reac-
tion. Shown along the x-axis are (Kπ

J , J
π) and the correspond-

ing energies in keV. The strength at 83 keV is the summed
strength for the two levels shown. The observed strengths to
levels at 173.8 keV and 220 keV are not shown as there are
doublets at these energies and the (Kπ

J , J
π) for only one mem-

ber is identified. All the data are taken from [21]. Note that
error bars for data values are not shown in the figure. The
calculations use SUBFF (3) limit II with K̄J basis (30) and ζ2

in (35) is chosen to be 0.8. For the eight strengths shown in
the figure the corresponding ST values with good KJ (defined
by (31)) are 0.032, 0.494, 0.0, 0.212, 0.071, 0.056, 0.025 and
0.124 respectively. Similarly the ST values from Nilsson model
calculations of [21] are 0.096, 0.457, 0.029, 0.151, 0.209, 0.003,
0.002 and 0.096 respectively
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